A Group Theoretic Approach to Cyclic Cubic Fields

Autor: Siham Aouissi, Daniel C. Mayer
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics, Vol 12, Iss 1, p 126 (2023)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12010126
Popis: Let (kμ)μ=14 be a quartet of cyclic cubic number fields sharing a common conductor c=pqr divisible by exactly three prime(power)s, p,q,r. For those components of the quartet whose 3-class group Cl3(kμ)≃(Z/3Z)2 is elementary bicyclic, the automorphism group M=Gal(F32(kμ)/kμ) of the maximal metabelian unramified 3-extension of kμ is determined by conditions for cubic residue symbols between p,q,r and for ambiguous principal ideals in subfields of the common absolute 3-genus field k* of all kμ. With the aid of the relation rank d2(M), it is decided whether M coincides with the Galois group G=Gal(F3∞(kμ)/kμ) of the maximal unramified pro-3-extension of kμ.
Databáze: Directory of Open Access Journals