A Hyperbolic Secant-Squared Distribution via the Nonlinear Evolution Equation and Its Application

Autor: Amira F. Daghistani, Ahmed M. T. Abd El-Bar, Ahmed M. Gemeay, Mahmoud A. E. Abdelrahman, Samia Z. Hassan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics, Vol 11, Iss 20, p 4270 (2023)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math11204270
Popis: In this article, we present a hyperbolic secant-squared distribution via the nonlinear evolution equation. Namely, for this equation, the probability density function of the hyperbolic secant-squared (HSS) distribution has been determined. The density of our model has a variety of shapes, including symmetric, left-skewed, and right-skewed. Eight distinct frequent list estimation methods have been proposed for estimating the parameters of our models. Additionally, these estimation techniques have been used to examine the behavior of the HSS model parameters using data sets that were generated randomly. To demonstrate how the findings may be used to model real data using the HSS distribution, we also use real data. Finally, the proposed justification can be applied to a variety of other complex physical models.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje