On Miura Transformations and Volterra-Type Equations Associated with the Adler-Bobenko-Suris Equations

Autor: Decio Levi, Matteo Petrera, Christian Scimiterna, Ravil Yamilov
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications, Vol 4, p 077 (2008)
Druh dokumentu: article
ISSN: 1815-0659
DOI: 10.3842/SIGMA.2008.077
Popis: We construct Miura transformations mapping the scalar spectral problems of the integrable lattice equations belonging to the Adler-Bobenko-Suris (ABS) list into the discrete Schrödinger spectral problem associated with Volterra-type equations. We show that the ABS equations correspond to Bäcklund transformations for some particular cases of the discrete Krichever-Novikov equation found by Yamilov (YdKN equation). This enables us to construct new generalized symmetries for the ABS equations. The same can be said about the generalizations of the ABS equations introduced by Tongas, Tsoubelis and Xenitidis. All of them generate Bäcklund transformations for the YdKN equation. The higher order generalized symmetries we construct in the present paper confirm their integrability.
Databáze: Directory of Open Access Journals