Autor: |
Dinan Andiwijayakusuma, Topan Setiadipura, Acep Purqon, Zaki Su'ud |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nuclear Engineering and Technology, Vol 54, Iss 10, Pp 3604-3613 (2022) |
Druh dokumentu: |
article |
ISSN: |
1738-5733 |
DOI: |
10.1016/j.net.2022.05.023 |
Popis: |
The Physical Protection System (PPS) plays an important role and must effectively deal with various adversary attacks in nuclear security. In specific single adversary path scenarios, we can calculate the PPS effectiveness by EASI (Estimated Adversary Sequence Interruption) through Probability of Interruption (PI) calculation. EASI uses a single value of the probability of detection (PD) and the probability of alarm communications (PC) in the PPS. In this study, we develop a multi-path analysis code based on EASI to evaluate the effectiveness of PPS. Our quantification method for PI considers the variability and uncertainty of PD and PC value by Monte Carlo simulation. We converted the 2-D scheme of the nuclear facility into an Adversary Sequence Diagram (ASD). We used ASD to find the adversary path with the lowest probability of interruption as the most vulnerable paths (MVP). We examined a hypothetical facility (Hypothetical National Nuclear Research Facility - HNNRF) to confirm our code compared with EASI. The results show that implementing the variability extension can estimate the PI value and its associated uncertainty. The multi-path analysis code allows the analyst to make it easier to assess PPS with more extensive facilities with more complex adversary paths. However, the variability of the PD value in each protection element allows a significant decrease in the PI value. The possibility of this decrease needs to be an important concern for PPS designers to determine the PD value correctly or set a higher standard for PPS performance that remains reliable. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|