'Quantity-effect' research strategy for comparison of antioxidant activity and quality of Rehmanniae Radix and Rehmannia Radix Praeparata by on-line HPLC-UV-ABTS assay

Autor: Hong-Ying Li, Jiang-Ji Fang, Hua-Dan Shen, Xue-Qiong Zhang, Xiao-Ping Ding, Jun-Feng Liu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: BMC Complementary Medicine and Therapies, Vol 20, Iss 1, Pp 1-10 (2020)
Druh dokumentu: article
ISSN: 2662-7671
DOI: 10.1186/s12906-019-2798-8
Popis: Abstract Background Quantitation analysis and chromatographic fingerprint of multi-components are frequently used to evaluate quality of herbal medicines but fail to reveal activity of the components. It is necessary to develop a rational approach of chromatography coupled with activity detection for quality assessment of herbal medicines. Methods An on-line HPLC-ultraviolet detection-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) free radical scavenging (HPLC-UV-ABTS) method was developed to obtain the chromatographic fingerprints and ABTS+• inhibition profiles (active fingerprints) of Rehmanniae Radix (Dihuang) and Rehmannia Radix Praeparata (Shu Dihuang). Eighteen compounds showing ABTS+• inhibition activity were identified by HPLC-fourier-transform mass spectrometry (HPLC-FTMS). Verbascoside was used as a positive control to evaluate the total activities of the samples and the contribution rate of each compound. The similarities of the chromatographic and active fingerprints were estimated by the vectorial angle cosine method. Results The results showed that the HPLC-UV-ABTS method could efficiently detect antioxidant activity of the herbal medicine samples. The antioxidants were different between the two herbs and several new antioxidants were identified in Shu Dihuang. A function equation was generated in terms of the negative peak area (x) and the concentrations of verbascoside (y, μg/mL), y = 2E-07 × 4 - 8E-05 × 3 + 0.0079 × 2 + 0.5755x + 1.4754, R 2 = 1. Iridoid glycosides were identified as main antioxidants and showed their higher contributions to the total activity of the samples. The total contributions of the three main active components in the Dihuang and Shu Dihuang samples to the total activity, such as echinacoside, verbascoside and an unknown compound, were 39.2–58.1% and 55.9–69.4%, respectively. The potencies of the main active components in the Shu Dihuang samples were two to ten times those in the Dihuang samples. Similarity values for S12 in the chromatographic fingerprints and S03, S12 and P03 in the active fingerprints were less than 0.9. The three batches of samples might show their different quality with the other samples. Conclusions The results suggested that the combination of “quantity-effect” research strategy and the HPLC-UV-ABTS analysis method could comprehensively evaluate the active components and quality of Dihuang and Shu Dhuang.
Databáze: Directory of Open Access Journals