Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca2+ entry-mediated turnover of focal adhesions

Autor: Ho-Kai Huang, Yi-Hsin Lin, Heng-Ai Chang, Yi-Shyun Lai, Ying-Chi Chen, Soon-Cen Huang, Cheng-Yang Chou, Wen-Tai Chiu
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Biomedical Science, Vol 27, Iss 1, Pp 1-14 (2020)
Druh dokumentu: article
ISSN: 1423-0127
DOI: 10.1186/s12929-020-00630-5
Popis: Abstract Background Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. Methods Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. Results We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. Conclusion Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer. Graphical abstract
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje