Kernel-based framework for spectral dimensionality reduction and clustering formulation: A theoretical study

Autor: Xiomara Patricia BLANCO VALENCIA, M. A. BECERRA, A. E. CASTRO OSPINA, M. ORTEGA ADARME, D. VIVEROS MELO, D. H. PELUFFO ORDÓÑEZ
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Advances in Distributed Computing and Artificial Intelligence Journal, Vol 6, Iss 1, Pp 31-40 (2017)
Druh dokumentu: article
ISSN: 2255-2863
DOI: 10.14201/ADCAIJ2017613140
Popis: This work outlines a unified formulation to represent spectral approaches for both dimensionality reduction and clustering. Proposed formulation starts with a generic latent variable model in terms of the projected input data matrix.Particularly, such a projection maps data onto a unknown high-dimensional space. Regarding this model, a generalized optimization problem is stated using quadratic formulations and a least-squares support vector machine.The solution of the optimization is addressed through a primal-dual scheme.Once latent variables and parameters are determined, the resultant model outputs a versatile projected matrix able to represent data in a low-dimensional space, as well as to provide information about clusters. Particularly, proposedformulation yields solutions for kernel spectral clustering and weighted-kernel principal component analysis.
Databáze: Directory of Open Access Journals