Popis: |
Abstract Background Potassium (K) is an essential nutrient for plant growth and development. Maize (Zea mays) is a widely planted crops in the world and requires a huge amount of K fertilizer. Arbuscular mycorrhizal fungi (AMF) are closely related to the K uptake of maize. Genetic improvement of maize K utilization efficiency will require elucidating the molecular mechanisms of maize K uptake through the mycorrhizal pathway. Here, we employed transcriptome and gene family analysis to elucidate the mechanism influencing the K uptake and utilization efficiency of mycorrhizal maize. Methods and results The transcriptomes of maize were studied with and without AMF inoculation and under different K conditions. AM symbiosis increased the K concentration and dry weight of maize plants. RNA sequencing revealed that genes associated with the activity of the apoplast and nutrient reservoir were significantly enriched in mycorrhizal roots under low-K conditions but not under high-K conditions. Weighted gene correlation network analysis revealed that three modules were strongly correlated with K content. Twenty-one hub genes enriched in pathways associated with glycerophospholipid metabolism, glycerolipid metabolism, starch and sucrose metabolism, and anthocyanin biosynthesis were further identified. In general, these hub genes were upregulated in AMF-colonized roots under low-K conditions. Additionally, the members of 14 gene families associated with K obtain were identified (ARF: 38, ILK: 4, RBOH: 12, RUPO: 20, MAPKK: 89, CBL: 14, CIPK: 44, CPK: 40, PIN: 10, MYB: 174, NPF: 79, KT: 19, HAK/HKT/KUP: 38, and CPA: 8) from maize. The transcript levels of these genes showed that 92 genes (ARF:6, CBL:5, CIPK:13, CPK:2, HAK/HKT/KUP:7, PIN:2, MYB:26, NPF:16, RBOH:1, MAPKK:12 and RUPO:2) were upregulated with AM symbiosis under low-K conditions. Conclusions This study indicated that AMF increase the resistance of maize to low-K stress by regulating K uptake at the gene transcription level. Our findings provide a genome-level resource for the functional assignment of genes regulated by K treatment and AM symbiosis in K uptake-related gene families in maize. This may contribute to elucidate the molecular mechanisms of maize response to low K stress with AMF inoculation, and provided a theoretical basis for AMF application in the crop field. |