Autor: |
Lingbo Jin, Yubo Tang, Jackson B. Coole, Melody T. Tan, Xuan Zhao, Hawraa Badaoui, Jacob T. Robinson, Michelle D. Williams, Nadarajah Vigneswaran, Ann M. Gillenwater, Rebecca R. Richards-Kortum, Ashok Veeraraghavan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-47065-2 |
Popis: |
Abstract Histopathology plays a critical role in the diagnosis and surgical management of cancer. However, access to histopathology services, especially frozen section pathology during surgery, is limited in resource-constrained settings because preparing slides from resected tissue is time-consuming, labor-intensive, and requires expensive infrastructure. Here, we report a deep-learning-enabled microscope, named DeepDOF-SE, to rapidly scan intact tissue at cellular resolution without the need for physical sectioning. Three key features jointly make DeepDOF-SE practical. First, tissue specimens are stained directly with inexpensive vital fluorescent dyes and optically sectioned with ultra-violet excitation that localizes fluorescent emission to a thin surface layer. Second, a deep-learning algorithm extends the depth-of-field, allowing rapid acquisition of in-focus images from large areas of tissue even when the tissue surface is highly irregular. Finally, a semi-supervised generative adversarial network virtually stains DeepDOF-SE fluorescence images with hematoxylin-and-eosin appearance, facilitating image interpretation by pathologists without significant additional training. We developed the DeepDOF-SE platform using a data-driven approach and validated its performance by imaging surgical resections of suspected oral tumors. Our results show that DeepDOF-SE provides histological information of diagnostic importance, offering a rapid and affordable slide-free histology platform for intraoperative tumor margin assessment and in low-resource settings. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|