TGF-β2-induced NEAT1 regulates lens epithelial cell proliferation, migration and EMT by the miR-26a-5p/FANCE axis

Autor: Xiao-Hui Yu, Shao-Yi Liu, Cheng-Fang Li
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: International Journal of Ophthalmology, Vol 14, Iss 11, Pp 1674-1682 (2021)
Druh dokumentu: article
ISSN: 2222-3959
2227-4898
DOI: 10.18240/ijo.2021.11.05
Popis: AIM: To explore the regulatory mechanism of nuclear paraspeckle assembly transcript 1 (NEAT1) in the pathogenesis of posterior capsule opacification (PCO). METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was executed to analyze NEAT1 and microRNA (miR)-26a-5p expression in transforming growth factor-beta 2 (TGF-β2)-disposed lens epithelial cells (LECs). The proliferation, cell cycle progression, apoptosis, and migration of TGF-β2-disposed LECs were evaluated. The relationship between NEAT1 or fanconi anemia (FA) complementation group E (FANCE) and miR-26a-5p was verified by dual-luciferase reporter assay. RESULTS: TGF-β2 induced NEAT1 expression in LECs. NEAT1 inhibition accelerated apoptosis, cell cycle arrest, decreased proliferation, epithelial-mesenchymal transition (EMT), and migration of TGF-β2-disposed LECs. NEAT1 sponged miR-26a-5p to further regulate FANCE expression. Rescue experiments presented that miR-26a-5p downregulation overturned NEAT1 silencing-mediated impacts on TGF-β2-disposed LEC biological behaviors. Additionally, FANCE overexpression reversed miR-26a-5p mimic-mediated impacts on TGF-β2-disposed LEC biological behaviors. CONCLUSION: TGF-β2-induced NEAT1 facilitates LEC proliferation, migration, and EMT by upregulating FANCE via sequestering miR-26a-5p.
Databáze: Directory of Open Access Journals