A Common Structure in PBW Bases of the Nilpotent Subalgebra of U_q(g)

Autor: Atsuo Kuniba, Masato Okado, Yasuhiko Yamada
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Symmetry, Integrability and Geometry: Methods and Applications, Vol 9, p 049 (2013)
Druh dokumentu: article
ISSN: 1815-0659
DOI: 10.3842/SIGMA.2013.049
Popis: For a finite-dimensional simple Lie algebra $mathfrak{g}$, let $U^+_q(mathfrak{g})$ be the positive part of the quantized universal enveloping algebra, and $A_q(mathfrak{g})$ be the quantized algebra of functions. We show that the transition matrix of the PBW bases of $U^+_q(mathfrak{g})$ coincides with the intertwiner between the irreducible $A_q(mathfrak{g})$-modules labeled by two different reduced expressions of the longest element of the Weyl group of $mathfrak{g}$. This generalizes the earlier result by Sergeev on $A_2$ related to the tetrahedron equation and endows a new representation theoretical interpretation with the recent solution to the 3D reflection equation for $C_2$. Our proof is based on a realization of $U^+_q(mathfrak{g})$ in a quotient ring of $A_q(mathfrak{g})$.
Databáze: Directory of Open Access Journals