IFI27/ISG12 Downregulates Estrogen Receptor α Transactivation by Facilitating Its Interaction With CRM1/XPO1 in Breast Cancer Cells

Autor: Mayte Guadalupe Cervantes-Badillo, Alejandro Paredes-Villa, Vania Gómez-Romero, Rafael Cervantes-Roldán, Luis E. Arias-Romero, Olga Villamar-Cruz, Miroslava González-Montiel, Tonatiuh Barrios-García, Alberto J. Cabrera-Quintero, Gabriel Rodríguez-Gómez, Laura Cancino-Villeda, Alejandro Zentella-Dehesa, Alfonso León-Del-Río
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Frontiers in Endocrinology, Vol 11 (2020)
Druh dokumentu: article
ISSN: 1664-2392
DOI: 10.3389/fendo.2020.568375
Popis: The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα−positive breast cancer tumors.
Databáze: Directory of Open Access Journals