Uniqueness Results and Asymptotic Behaviour of Nonlinear Schrödinger–Kirchhoff Equations

Autor: Dongdong Sun
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Symmetry, Vol 15, Iss 10, p 1856 (2023)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym15101856
Popis: In this paper, we first study the uniqueness and symmetry of solution of nonlinear Schrödinger–Kirchhoff equations with constant coefficients. Then, we show the uniqueness of the solution of nonlinear Schrödinger–Kirchhoff equations with the polynomial potential. In the end, we investigate the asymptotic behaviour of the positive least energy solutions to nonlinear Schrödinger–Kirchhoff equations with vanishing potentials. The vanishing potential means that the zero set of the potential is non-empty. The uniqueness results of Schrödinger equations and the scaling technique are used in our proof. The elliptic estimates and energy analysis are applied in the proof of the asymptotic behaviour of the above Schrödinger–Kirchhoff-type equations.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje