Hepatic Oxidative Stress and Cell Death Influenced by Dietary Lipid Levels in a Fresh Teleost

Autor: Lingjie He, Yupeng Zhang, Quanquan Cao, Hongying Shan, Jiali Zong, Lin Feng, Weidan Jiang, Pei Wu, Juan Zhao, Haifeng Liu, Jun Jiang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Antioxidants, Vol 13, Iss 7, p 808 (2024)
Druh dokumentu: article
ISSN: 2076-3921
DOI: 10.3390/antiox13070808
Popis: Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.
Databáze: Directory of Open Access Journals