Coefficient inequalities for a class of analytic functions associated with the lemniscate of Bernoulli
Autor: | Trailokya Panigrahi, Janusz Sokól |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 4, Pp 83-95 (2019) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v37i4.32701 |
Popis: | In this paper, a new subclass of analytic functions ML_{\lambda}^{*} associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szego functional |a_{3}-\mu a_{2}^{2}| for both real and complex \mu are considered. Further, the sharp upper bound to the second Hankel determinant |H_{2}(1)| for the function f in the class ML_{\lambda}^{*} using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |