Coefficient inequalities for a class of analytic functions associated with the lemniscate of Bernoulli

Autor: Trailokya Panigrahi, Janusz Sokól
Jazyk: English<br />Portuguese
Rok vydání: 2019
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 4, Pp 83-95 (2019)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v37i4.32701
Popis: In this paper, a new subclass of analytic functions ML_{\lambda}^{*} associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szego functional |a_{3}-\mu a_{2}^{2}| for both real and complex \mu are considered. Further, the sharp upper bound to the second Hankel determinant |H_{2}(1)| for the function f in the class ML_{\lambda}^{*} using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated.
Databáze: Directory of Open Access Journals