Impact of a Multiple Pendulum with a Non-Linear Contact Force

Autor: Dan B. Marghitu, Jing Zhao
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 8, p 1202 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8081202
Popis: This article presents a method to solve the impact of a kinematic chain in terms of a non-linear contact force. The nonlinear contact force has different expressions for elastic compression, elasto-plastic compression, and elastic restitution. Lagrange equations of motion are used to obtain the non-linear equations of motion with friction for the collision period. The kinetic energy during the impact is compared with the pre-impact kinetic energy. During the impact of a double pendulum the kinetic energy of the non-impacting link is increasing and the total kinetic energy of the impacting link is decreasing.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje