A Bezout ring with nonzero principal Jacobson radical
Autor: | A.I. Gatalevych, A.A. Dmytruk |
---|---|
Jazyk: | English<br />Ukrainian |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 72-75 (2022) |
Druh dokumentu: | article |
ISSN: | 2075-9827 2313-0210 |
DOI: | 10.15330/cmp.14.1.72-75 |
Popis: | In this paper, we study a commutative Bezout domain with nonzero Jacobson radical being a principal ideal. It has been proved that such a Bezout domain is a ring of the stable range 1. As a result, we have obtained that such a Bezout domain is a ring over which any matrix can be reduced to a canonical diagonal form by means of elementary transformations of its rows and columns. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |