A Bezout ring with nonzero principal Jacobson radical

Autor: A.I. Gatalevych, A.A. Dmytruk
Jazyk: English<br />Ukrainian
Rok vydání: 2022
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 14, Iss 1, Pp 72-75 (2022)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.14.1.72-75
Popis: In this paper, we study a commutative Bezout domain with nonzero Jacobson radical being a principal ideal. It has been proved that such a Bezout domain is a ring of the stable range 1. As a result, we have obtained that such a Bezout domain is a ring over which any matrix can be reduced to a canonical diagonal form by means of elementary transformations of its rows and columns.
Databáze: Directory of Open Access Journals