Clustering-Driven DGS-Based Micro-Doppler Feature Extraction for Automatic Dynamic Hand Gesture Recognition

Autor: Chengjin Zhang, Zehao Wang, Qiang An, Shiyong Li, Ahmad Hoorfar, Chenxiao Kou
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Sensors, Vol 22, Iss 21, p 8535 (2022)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s22218535
Popis: We propose in this work a dynamic group sparsity (DGS) based time-frequency feature extraction method for dynamic hand gesture recognition (HGR) using millimeter-wave radar sensors. Micro-Doppler signatures of hand gestures show both sparse and structured characteristics in time-frequency domain, but previous study only focus on sparsity. We firstly introduce the structured prior when modeling the micro-Doppler signatures in this work to further enhance the features of hand gestures. The time-frequency distributions of dynamic hand gestures are first modeled using a dynamic group sparse model. A DGS-Subspace Pursuit (DGS-SP) algorithm is then utilized to extract the corresponding features. Finally, the support vector machine (SVM) classifier is employed to realize the dynamic HGR based on the extracted group sparse micro-Doppler features. The experiment shows that the proposed method achieved 3.3% recognition accuracy improvement over the sparsity-based method and has a better recognition accuracy than CNN based method in small dataset.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje