Autor: |
Chengjin Zhang, Zehao Wang, Qiang An, Shiyong Li, Ahmad Hoorfar, Chenxiao Kou |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 21, p 8535 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22218535 |
Popis: |
We propose in this work a dynamic group sparsity (DGS) based time-frequency feature extraction method for dynamic hand gesture recognition (HGR) using millimeter-wave radar sensors. Micro-Doppler signatures of hand gestures show both sparse and structured characteristics in time-frequency domain, but previous study only focus on sparsity. We firstly introduce the structured prior when modeling the micro-Doppler signatures in this work to further enhance the features of hand gestures. The time-frequency distributions of dynamic hand gestures are first modeled using a dynamic group sparse model. A DGS-Subspace Pursuit (DGS-SP) algorithm is then utilized to extract the corresponding features. Finally, the support vector machine (SVM) classifier is employed to realize the dynamic HGR based on the extracted group sparse micro-Doppler features. The experiment shows that the proposed method achieved 3.3% recognition accuracy improvement over the sparsity-based method and has a better recognition accuracy than CNN based method in small dataset. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|