Autor: |
Joel Brewster Lewis, Ricky Ini Liu, Alejandro H. Morales, Greta Panova, Steven V Sam, Yan Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2011 |
Předmět: |
|
Zdroj: |
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AO,..., Iss Proceedings (2011) |
Druh dokumentu: |
article |
ISSN: |
1365-8050 |
DOI: |
10.46298/dmtcs.2941 |
Popis: |
We study the functions that count matrices of given rank over a finite field with specified positions equal to zero. We show that these matrices are $q$-analogues of permutations with certain restricted values. We obtain a simple closed formula for the number of invertible matrices with zero diagonal, a $q$-analogue of derangements, and a curious relationship between invertible skew-symmetric matrices and invertible symmetric matrices with zero diagonal. In addition, we provide recursions to enumerate matrices and symmetric matrices with zero diagonal by rank. Finally, we provide a brief exposition of polynomiality results for enumeration questions related to those mentioned, and give several open questions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|