Autor: |
Yan-yan Zhao, Hai-ying Fu, Tao Yang, Ming-zhe Zhou, Huan Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-64258-3 |
Popis: |
Abstract Pile is a common foundation on the slope, which poses a serious threat to the construction and operation if the slope deformation and causes landslide. In this study, a model device of pile foundation on landslide was independently developed by relative displacement loading between pile and soil to explore the influence of landslide deformation on pile and analysis the soil failure rule and the deformation characteristics of pile in different stages of landslide deformation, a few model tests were completed including the relative displacement between soil and pile from 1 to 17 cm, and the pile diameter and the modulus of slide bed were also considered. The results indicated that: the evolution process of landslide deformation with pile foundation on could be divided into four stages including soil compaction, cracks growth, yield stage, and failure stage; ratios of the maximum soil pressure and bending moment growth from the soil compaction stage to the cracks growth stage to the total growth in these four stages are both exceeding 60%; the soil pressure increases with the increase of pile diameter and sliding bed modulus. Therefore, it is best to effectively monitor and control the landslide in the initial soil compression stage that in soil compaction stage and methods such as increasing pile foundations or reinforcing the sliding bed can be used for protection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|