Autor: |
Yun Wang, Wenjuan Zhang, Pengjiang Zhu, Wei You, Xiaopan Xue, Rui Wang, Yanping Ma, Wen-Hua Sun |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Molecules, Vol 29, Iss 17, p 4150 (2024) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules29174150 |
Popis: |
The model precatalyst sp3- and sp2-N dinitrogen-coordinated zinc–heteroimidazole has been used as an efficient catalyst for the ring-opening polymerization of cyclic esters. Subsequent to our exceptional active 5,6,7-trihydroquinolin-8-amine-zinc catalysts for the ring-opening polymerization (ROP) of ε-caprolactone, various pyridine-fused cycloalkanones (ring size from five to eight) are developed for the correspondent fused amine–pyridine derivatives and their zinc–heteroimidazole chloride complexes Zn1–Zn8 (LZnCl2) bearing N-diphenylphosphinoethyl pendants. Activated with two equivalents of LiN(SiMe3)2, the title zinc complexes efficiently promote the ROP of L-lactide (L-LA) in situ; among them, Zn4/2Li(NSiMe3)2 catalyzed 500 equivalent L-LA at 80 °C with 92% conversion in 5 min (TOF: 5520 h−1). Under the same conditions, the catalytic efficiency for the ROP of rac-LA by Zn1–Zn8/2Li(NSiMe3)2 was slightly lower than that for L-LA (highest TOF: 4440 h−1). In both cases, cyclooctyl-fused pyridyl–zinc complexes exhibited higher activity than others, while the cycloheptyl-fused zinc complexes showed the lowest activity. The microstructure analysis of the polymers showed they possessed a linear structure capped with CH3O as major and cyclic structure as minor. In this work, all the ligands and zinc complexes were well characterized by 1H/13C/31P NMR, FT-IR spectroscopy as well as elemental analysis. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|