Autor: |
Claudia Valls |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2017, Iss 261,, Pp 1-9 (2017) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
Let $A(\theta)$ non-constant and $B_j(\theta)$ for $j=0,1,2,3$ be real trigonometric polynomials of degree at most $\eta \ge 1$ in the variable x. Then the real equivariant trigonometric polynomial Abel differential equations $A(\theta) y' =B_1(\theta) y +B_3 (\theta) y^3$ with $B_3 (\theta)\ne 0$, and the real polynomial equivariant trigonometric polynomial Abel differential equations of second kind $A(\theta) y y' = B_0(\theta)+ B_2(\theta) y^2$ with $B_2 (\theta)\ne 0$ have at most 7 real trigonometric polynomial solutions. Moreover there are real trigonometric polynomial equations of these type having these maximum number of trigonometric polynomial solutions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|