Normalized-Model Reference System for Parameter Estimation of Induction Motors

Autor: Adolfo Véliz-Tejo, Juan Carlos Travieso-Torres, Andrés A. Peters, Andrés Mora, Felipe Leiva-Silva
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Energies, Vol 15, Iss 13, p 4542 (2022)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en15134542
Popis: This manuscript proposes a short tuning march algorithm to estimate induction motors (IM) electrical and mechanical parameters. It has two main novel proposals. First, it starts by presenting a normalized-model reference adaptive system (N-MRAS) that extends a recently proposed normalized model reference adaptive controller for parameter estimation of higher-order nonlinear systems, adding filtering. Second, it proposes persistent exciting (PE) rules for the input amplitude. This N-MRAS normalizes the information vector and identification adaptive law gains for a more straightforward tuning method, avoiding trial and error. Later, two N-MRAS designs consider estimating IM electrical and mechanical parameters. Finally, the proposed algorithm considers starting with a V/f speed control strategy, applying a persistently exciting voltage and frequency, and applying the two designed N-MRAS. Test bench experiments validate the efficacy of the proposed algorithm for a 10 HP IM.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje