Investigating genomic structure using changept: A Bayesian segmentation model

Autor: Manjula Algama, Jonathan M. Keith
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Computational and Structural Biotechnology Journal, Vol 10, Iss 17, Pp 107-115 (2014)
Druh dokumentu: article
ISSN: 2001-0370
DOI: 10.1016/j.csbj.2014.08.003
Popis: Genomes are composed of a wide variety of elements with distinct roles and characteristics. Some of these elements are well-characterised functional components such as protein-coding exons. Other elements play regulatory or structural roles, encode functional non-protein-coding RNAs, or perform some other function yet to be characterised. Still others may have no functional importance, though they may nevertheless be of interest to biologists. One technique for investigating the composition of genomes is to segment sequences into compositionally homogenous blocks. This technique, known as ‘sequence segmentation’ or ‘change-point analysis’, is used to identify patterns of variation across genomes such as GC-rich and GC-poor regions, coding and non-coding regions, slowly evolving and rapidly evolving regions and many other types of variation. In this mini-review we outline many of the genome segmentation methods currently available and then focus on a Bayesian DNA segmentation algorithm, with examples of its various applications.
Databáze: Directory of Open Access Journals