Autor: |
Guillaume Paradis, Fabienne F. V. Chevance, Willisa Liou, Thibaud T. Renault, Kelly T. Hughes, Simon Rainville, Marc Erhardt |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-017-01302-5 |
Popis: |
Abstract Many bacteria swim through liquids or crawl on surfaces by rotating long appendages called flagella. Flagellar filaments are assembled from thousands of subunits that are exported through a narrow secretion channel and polymerize beneath a capping scaffold at the tip of the growing filament. The assembly of a flagellum uses a significant proportion of the biosynthetic capacities of the cell with each filament constituting ~1% of the total cell protein. Here, we addressed a significant question whether a flagellar filament can form a new cap and resume growth after breakage. Re-growth of broken filaments was visualized using sequential 3-color fluorescent labeling of filaments after mechanical shearing. Differential electron microscopy revealed the formation of new cap structures on broken filaments that re-grew. Flagellar filaments are therefore able to re-grow if broken by mechanical shearing forces, which are expected to occur frequently in nature. In contrast, no re-growth was observed on filaments that had been broken using ultrashort laser pulses, a technique allowing for very local damage to individual filaments. We thus conclude that assembly of a new cap at the tip of a broken filament depends on how the filament was broken. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|