Entire solutions of certain fourth order elliptic problems and related inequalities

Autor: D’Ambrosio Lorenzo, Mitidieri Enzo
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 785-829 (2022)
Druh dokumentu: article
ISSN: 2191-9496
2191-950X
DOI: 10.1515/anona-2021-0217
Popis: We study distributional solutions of semilinear biharmonic equations of the type Δ2u+f(u)=0 onℝN,{\Delta ^2}u + f(u) = 0\quad on\;{{\mathbb R} ^N}, where f is a continuous function satisfying f (t)t ≥ c |t|q+1 for all t ∈ ℝ with c > 0 and q > 1. By using a new approach mainly based on careful choice of suitable weighted test functions and a new version of Hardy- Rellich inequalities, we prove several Liouville theorems independently of the dimension N and on the sign of the solutions.
Databáze: Directory of Open Access Journals