Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning.

Autor: Philipp D Lösel, Coline Monchanin, Renaud Lebrun, Alejandra Jayme, Jacob J Relle, Jean-Marc Devaud, Vincent Heuveline, Mathieu Lihoreau
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: PLoS Computational Biology, Vol 19, Iss 10, p e1011529 (2023)
Druh dokumentu: article
ISSN: 1553-734X
1553-7358
DOI: 10.1371/journal.pcbi.1011529&type=printable
Popis: Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje