Autor: |
Michael D. Abramoff, Noelle Whitestone, Jennifer L. Patnaik, Emily Rich, Munir Ahmed, Lutful Husain, Mohammad Yeadul Hassan, Md. Sajidul Huq Tanjil, Dena Weitzman, Tinglong Dai, Brandie D. Wagner, David H. Cherwek, Nathan Congdon, Khairul Islam |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
npj Digital Medicine, Vol 6, Iss 1, Pp 1-8 (2023) |
Druh dokumentu: |
article |
ISSN: |
2398-6352 |
DOI: |
10.1038/s41746-023-00931-7 |
Popis: |
Abstract Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37–1.80) than control (1.14 encounters/hour, 95% CI: 1.02–1.25), p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|