Autonomous artificial intelligence increases real-world specialist clinic productivity in a cluster-randomized trial

Autor: Michael D. Abramoff, Noelle Whitestone, Jennifer L. Patnaik, Emily Rich, Munir Ahmed, Lutful Husain, Mohammad Yeadul Hassan, Md. Sajidul Huq Tanjil, Dena Weitzman, Tinglong Dai, Brandie D. Wagner, David H. Cherwek, Nathan Congdon, Khairul Islam
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: npj Digital Medicine, Vol 6, Iss 1, Pp 1-8 (2023)
Druh dokumentu: article
ISSN: 2398-6352
DOI: 10.1038/s41746-023-00931-7
Popis: Abstract Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37–1.80) than control (1.14 encounters/hour, 95% CI: 1.02–1.25), p
Databáze: Directory of Open Access Journals