Pseudospectral analysis for multidimensional fractional Burgers equation based on Caputo fractional derivative
Autor: | Harvindra Singh, A. K. Mittal, L. K. Balyan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Arabian Journal of Mathematics, Vol 13, Iss 2, Pp 409-424 (2024) |
Druh dokumentu: | article |
ISSN: | 2193-5343 2193-5351 |
DOI: | 10.1007/s40065-024-00465-0 |
Popis: | Abstract This study presents the Chebyshev pseudospectral approach in time and space to approximate a solution to the time-fractional multidimensional Burgers equation. The suggested approach utilizes Chebyshev–Gauss–Lobatto (CGL) points in both spatial and temporal directions. To figure out the fractional derivative matrix at CGL points, we use the Caputo fractional derivative formula. Further, the Chebyshev fractional derivative matrix is utilized to reduce the given problem in an algebraic system of equations. The numerical approach known as the Newton–Raphson is implemented to get the desired results for the system. Error analysis for the set of values of $$ \nu $$ ν is done for various model examples of fractional Burgers equations, where $$\nu $$ ν represents the fractional order. The computed numerical results are in perfect agreement with the exact solutions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |