The curvature entropy inequalities of convex bodies

Autor: Zhang Deyan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Open Mathematics, Vol 22, Iss 1, Pp 355-405 (2024)
Druh dokumentu: article
ISSN: 2391-5455
2024-0066
DOI: 10.1515/math-2024-0066
Popis: There are many entropy inequalities in geometry, some of them can be seen as the Minkowski inequalities in the form of entropy, which play important roles in convex geometry. In this article, let PP and QQ be convex bodies, we introduce the mixed curvature entropy Mf(P,Q){M}_{f}\left(P,Q) and the curvature entropy Ef(P,Q){E}_{f}\left(P,Q) with respect to a continuous function ff. Moreover, we establish the log\log -Minkowski inequalities of the mixed curvature entropy and the curvature entropy for two classes of three-dimensional convex bodies.
Databáze: Directory of Open Access Journals