Autor: |
Eleonora Grilli, Roberto Battisti, Fabio Remondino |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 13, Iss 19, p 3960 (2021) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs13193960 |
Popis: |
This work presents an advanced photogrammetric pipeline for inspecting apple trees in the field, automatically detecting fruits from videos and quantifying their size and number. The proposed approach is intended to facilitate and accelerate farmers’ and agronomists’ fieldwork, making apple measurements more objective and giving a more extended collection of apples measured in the field while also estimating harvesting/apple-picking dates. In order to do this rapidly and automatically, we propose a pipeline that uses smartphone-based videos and combines photogrammetry, deep learning and geometric algorithms. Synthetic, laboratory and on-field experiments demonstrate the accuracy of the results and the potential of the proposed method. Acquired data, labelled images, code and network weights, are available at 3DOM-FBK GitHub account. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|