Autor: |
Raquel González del Pozo, Luis C. Dias, José Luis García-Lapresta |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 8, Iss 3, p 458 (2020) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math8030458 |
Popis: |
Many decision problems manage linguistic information assessed through several ordered qualitative scales. In these contexts, the main problem arising is how to aggregate this qualitative information. In this paper, we present a multi-criteria decision-making procedure that ranks a set of alternatives assessed by means of a specific ordered qualitative scale for each criterion. These ordered qualitative scales can be non-uniform and be formed by a different number of linguistic terms. The proposed procedure follows an ordinal approach by means of the notion of ordinal proximity measure that assigns an ordinal degree of proximity to each pair of linguistic terms of the qualitative scales. To manage the ordinal degree of proximity from different ordered qualitative scales, we provide a homogenization process. We also introduce a stochastic approach to assess the robustness of the conclusions. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|