Deep learning-empowered crop breeding: intelligent, efficient and promising

Autor: Xiaoding Wang, Haitao Zeng, Limei Lin, Yanze Huang, Hui Lin, Youxiong Que
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Frontiers in Plant Science, Vol 14 (2023)
Druh dokumentu: article
ISSN: 1664-462X
DOI: 10.3389/fpls.2023.1260089
Popis: Crop breeding is one of the main approaches to increase crop yield and improve crop quality. However, the breeding process faces challenges such as complex data, difficulties in data acquisition, and low prediction accuracy, resulting in low breeding efficiency and long cycle. Deep learning-based crop breeding is a strategy that applies deep learning techniques to improve and optimize the breeding process, leading to accelerated crop improvement, enhanced breeding efficiency, and the development of higher-yielding, more adaptive, and disease-resistant varieties for agricultural production. This perspective briefly discusses the mechanisms, key applications, and impact of deep learning in crop breeding. We also highlight the current challenges associated with this topic and provide insights into its future application prospects.
Databáze: Directory of Open Access Journals