Controlling Density and Modulus in Auxetic Foam Fabrications—Implications for Impact and Indentation Testing

Autor: Olly Duncan, Tom Allen, Leon Foster, Ruben Gatt, Joseph N. Grima, Andrew Alderson
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Proceedings, Vol 2, Iss 6, p 250 (2018)
Druh dokumentu: article
ISSN: 2504-3900
DOI: 10.3390/proceedings2060250
Popis: Foams are commonly used for cushioning in protective sporting equipment. Volumetrically compressing open-cell polyurethane foam buckles cell ribs creating a re-entrant structure—set by heating then cooling—which can impart auxetic behaviour. Theoretically, auxetic materials improve impact protection by increasing indentation resistance and energy absorption, potentially reducing sporting injuries and burdens on individuals, health services and national economies. In previous work, auxetic foam exhibited ~3 to ~8 times lower peak force (compared to its conventional counterpart) under impacts adopted from tests used to certify protective sporting equipment. Increases to the foam’s density and changes to stress/strain relationships (from fabrication) mean Poisson’s ratio’s contribution to reduced peak forces under impact is unclear. This work presents a simple fabrication method for foam samples with comparable density and linear stress/strain relationship, but different Poisson’s ratios ranging between 0.1 and −0.3, an important step in assessing the Poisson’s ratio’s contribution to impact force attenuation.
Databáze: Directory of Open Access Journals