Global Navigation Satellite Systems disciplined oscillator synchronisation of multistatic radar
Autor: | Piers J. Beasley, Nial Peters, Colin Horne, Matthew A. Ritchie |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | IET Radar, Sonar & Navigation, Vol 18, Iss 1, Pp 23-40 (2024) |
Druh dokumentu: | article |
ISSN: | 1751-8792 1751-8784 |
DOI: | 10.1049/rsn2.12475 |
Popis: | Abstract A fundamental challenge in the practical implementation of multistatic radar systems (MSRS) is the requirement for precise time and frequency synchronisation between the spatially separated radar nodes. The authors evaluate the performance of different classes of commercially available Global Navigation Satellite Systems (GNSS) timing receivers, Local Oscillators (LO) and GNSS Disciplined Oscillators (GNSSDOs) to determine the limitations of using one‐way GNSS Time and Frequency Transfer (TFT) in this application. From evaluating the performance of three pairs of GNSSDOs, it is concluded that one‐way GNSS TFT will likely be suitable only for the synchronisation of fully spatially coherent MSRS with carrier frequencies up to 100 MHz and waveform bandwidths up to 20 MHz. Whereas, in the case of short‐term spatially coherent MSRS, synchronisation of systems with carrier frequencies up to a few GHz and waveform bandwidths of over 100 MHz will likely be possible. The performance of the different classes of GNSSDOs during GNSS denial (holdover) are evaluated, where it is concluded that frequency offsets between LOs at the point of GNSS denial will often significantly contribute, or even dominate, the holdover performance. Analysis of two practical multistatic radar measurements verifies the function of using the GNSSDOs for wireless synchronisation of the ARESTOR MSRS. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |