Identification of the Wear Margin of a Pipeline–Machine Subsystem

Autor: Piotr Jan Bielawski
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Sciences, Vol 10, Iss 11, p 3977 (2020)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app10113977
Popis: The quality of company asset management is significantly dependent on the quality of a system for asset wear margin identification. A pipeline–machine subsystem may be an essential part of assets in many production companies. It is necessary to build models of pipeline–machine subsystems and models of a system for the identification of subsystem wear margin. The method used consists of a decomposition of desired characteristics of an enterprise into desired characteristics of a pipeline–machine subsystem. Methods for the identification of real characteristics of a subsystem depend on the character of subsystem operation. In this study, hydrodynamic and thermodynamic models of the subsystem are built. Tests are conducted on industrial and laboratory objects. The boundaries of the subsystem are defined and changes in pressure, temperature and mass flow rate in the pipeline are presented. Causes of changes in the mentioned quantities are described. Desired characteristics of the subsystem resulting from decomposition are described. The presented methods of determining efficiency for steady working conditions and open flow use hydrodynamic and thermodynamic models. Energy efficiency of the subsystem is decomposed into efficiencies of main elements of the subsystem. A method is proposed for determining the subsystem’s energy efficiency in the case of the flow into a closed vessel. It is possible to determine the hydraulic efficiency of the subsystem components: the suction pipe, the discharge pipe and the machine. The efficiency of the machine determined by the hydrodynamic method is complementary to the efficiency obtained by the thermodynamic method. The machine set efficiency is composed of hydraulic efficiency of the machine; mechanical efficiency of the machine, the gearbox and motor; and electric efficiency of the motor. Hydraulic efficiency of the pipeline is related to substitute measure of wear margin—the coefficient of resistance. Pressure drop is a diagnostic symptom. Thermal efficiency of the heat exchanger is related to a substitute measure of wear margin—the coefficient of heat penetration. Temperatures and mass flow rate in the heat exchanger are diagnostic symptoms. It is possible to determine the capacity and efficiency of subsystems with one side closed—such as those filling hydrophore and gas vessels.
Databáze: Directory of Open Access Journals