N-Containing α-Mangostin Analogs via Smiles Rearrangement as the Promising Cytotoxic, Antitrypanosomal, and SARS-CoV-2 Main Protease Inhibitory Agents

Autor: Nan Yadanar Lin Pyae, Arnatchai Maiuthed, Wongsakorn Phongsopitanun, Bongkot Ouengwanarat, Warongrit Sukma, Nitipol Srimongkolpithak, Jutharat Pengon, Roonglawan Rattanajak, Sumalee Kamchonwongpaisan, Zin Zin Ei, Preedakorn Chunhacha, Patcharin Wilasluck, Peerapon Deetanya, Kittikhun Wangkanont, Kowit Hengphasatporn, Yasuteru Shigeta, Thanyada Rungrotmongkol, Supakarn Chamni
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecules, Vol 28, Iss 3, p 1104 (2023)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules28031104
Popis: New N-containing xanthone analogs of α-mangostin were synthesized via one-pot Smiles rearrangement. Using cesium carbonate in the presence of 2-chloroacetamide and catalytic potassium iodide, α-mangostin (1) was subsequently transformed in three steps to provide ether 2, amide 3, and amine 4 in good yields at an optimum ratio of 1:3:3, respectively. The evaluation of the biological activities of α-mangostin and analogs 2–4 was described. Amine 4 showed promising cytotoxicity against the non-small-cell lung cancer H460 cell line fourfold more potent than that of cisplatin. Both compounds 3 and 4 possessed antitrypanosomal properties against Trypanosoma brucei rhodesiense at a potency threefold stronger than that of α-mangostin. Furthermore, ether 2 gave potent SARS-CoV-2 main protease inhibition by suppressing 3-chymotrypsinlike protease (3CLpro) activity approximately threefold better than that of 1. Fragment molecular orbital method (FMO–RIMP2/PCM) indicated the improved binding interaction of 2 in the 3CLpro active site regarding an additional ether moiety. Thus, the series of N-containing α-mangostin analogs prospectively enhance druglike properties based on isosteric replacement and would be further studied as potential biotically active chemical entries, particularly for anti-lung-cancer, antitrypanosomal, and anti-SARS-CoV-2 main protease applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje