Index boundedness and uniform connectedness of space of the G-permutation degree
Autor: | R. B. Beshimov, Dimitrios N. Georgiou, R. M. Zhuraev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Applied General Topology, Vol 22, Iss 2, Pp 447-459 (2021) |
Druh dokumentu: | article |
ISSN: | 1576-9402 1989-4147 |
DOI: | 10.4995/agt.2021.15566 |
Popis: | In this paper the properties of space of the G-permutation degree, like: weight, uniform connectedness and index boundedness are studied. It is proved that: (1) If (X, U) is a uniform space, then the mapping π s n, G : (X n , U n ) → (SP n GX, SP n GU) is uniformly continuous and uniformly open, moreover w (U) = w (SP n GU); (2) If the mapping f : (X, U) → (Y, V) is a uniformly continuous (open), then the mapping SP n Gf : (SP n GX, SP n GU) → (SP n GY, SP n GV) is also uniformly continuous (open); (3) If the uniform space (X, U) is uniformly connected, then the uniform space (SP n GX, SP n GU) is also uniformly connected. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |