Silencing Glypican-1 enhances the antitumor effects of Pictilisib via downregulating PI3K/Akt/ERK signaling in chemo-resistant esophageal adenocarcinoma

Autor: Akshay Pratap, Andrea Qualman, Hedlund Garrett, Lindsey Westbrook, Erlinda The, Sanchayita Mitra, Mila Cordero, Kenneth Meza Monge, Juan- Pablo Idrovo, Argudit Chauhan, Linling Cheng, Mitchell Jay Cohen, Benedetto Mungo, Sachin Wani, Robert Alexander Meguid, Martin D McCarter, Xianzhong Meng
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Molecular & Cellular Oncology, Vol 10, Iss 1 (2023)
Druh dokumentu: article
ISSN: 2372-3556
23723556
DOI: 10.1080/23723556.2023.2238873
Popis: Poorly differentiated esophageal adenocarcinoma (PDEAC) has a dismal prognosis. Glypican-1(GPC-1) is known to be upregulated in several cancer types in contrast to healthy tissues, rendering it as a biomarker. Nevertheless, the potential therapeutic targeting of GPC-1 has not been explored in PDEAC. There is accumulating evidence that GPC-1, via upregulation of PI3K/Akt/ERK signaling, plays a crucial role in the progression and chemoresistance in cancer. Pictilisib, a class I pan PI3K inhibitor, has shown promising antitumor results in clinical trials, however, has not gained widespread success due to acquired drug resistance. This study investigated the role of GPC-1 in chemo-resistant PDEAC and appraises the impact of targeted silencing of GPC-1 on the antitumor effects of Pictilisib in PDEAC cell lines. Immunohistochemistry assays in PDEAC tissue specimens demonstrated a pronounced intensity of staining with GPC-1. Upregulation of GPC-1 was found to be correlated with advanced stage and poor prognosis. In-vitro studies examined the influence of GPC-1 knockdown and Pictilisib, both as individual agents and in combination, on cytotoxicity, cell cycle distribution, apoptosis, and gene expression profiles. Silencing GPC-1 alone showed significantly reduced cell viability, migration, colony formation, epithelial-mesenchymal transition, and stemness in PDEAC cells. Significantly, knockdown of GPC-1 combined with low-dose Pictilisib led to enhancement of cytotoxicity, cell cycle arrest, and apoptosis in ESO-26 and OE-33 cells. In the xenograft mouse model, the combination of Pictilisib and GPC-1 knockdown exhibited synergy. These findings suggest that GPC-1 represents a promising target to augment chemosensitivity in esophageal adenocarcinoma.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje