Autor: |
Haiyan Guo, Bo Zhou |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-21 (2020) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-020-02427-4 |
Popis: |
Abstract For a connected graph G and α ∈ [ 0 , 1 ) $\alpha \in [0,1)$ , the distance α-spectral radius of G is the spectral radius of the matrix D α ( G ) $D_{\alpha }(G)$ defined as D α ( G ) = α T ( G ) + ( 1 − α ) D ( G ) $D_{\alpha }(G)=\alpha T(G)+(1-\alpha )D(G)$ , where T ( G ) $T(G)$ is a diagonal matrix of vertex transmissions of G and D ( G ) $D(G)$ is the distance matrix of G. We give bounds for the distance α-spectral radius, especially for graphs that are not transmission regular, propose local graft transformations that decrease or increase the distance α-spectral radius, and determine the graphs that minimize and maximize the distance α-spectral radius among several families of graphs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|