Autor: |
Jie Yang, Cristopher Reyes Loaiciga, Hou-Ru Yue, Ya-Jing Hou, Jun Li, Cheng-Xi Li, Jing Li, Yue Zou, Shuai Zhao, Feng-Li Zhang, Xin-Qing Zhao |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Fungi, Vol 10, Iss 10, p 697 (2024) |
Druh dokumentu: |
article |
ISSN: |
2309-608X |
DOI: |
10.3390/jof10100697 |
Popis: |
Trichoderma species have been reported as masters in producing cellulolytic enzymes for the biodegradation of lignocellulolytic biomass and biocontrol agents against plant pathogens and pests. In our previous study, a novel Trichoderma strain LZ117, which shows potent capability in cellulase production, was isolated. Herein, we conducted multilocus phylogenetic analyses based on DNA barcodes and performed time-scaled phylogenomic analyses using the whole genome sequences of the strain, annotated by integrating transcriptome data. Our results suggest that this strain represents a new species closely related to T. atrobrunneum (Harzianum clade). Genes encoding carbohydrate-active enzymes (CAZymes), transporters, and secondary metabolites were annotated and predicted secretome in Trichoderma sp. LZ117 was also presented. Furthermore, genetic manipulation of this strain was successfully achieved using PEG-mediated protoplast transformation. A putative transporter gene encoding maltose permease (Mal1) was overexpressed, which proved that this transporter does not affect cellulase production. Moreover, overexpressing the native Cre1 homolog in LZ117 demonstrated a more pronounced impact of glucose-caused carbon catabolite repression (CCR), suggesting the importance of Cre1-mediated CCR in cellulase production of Trichoderma sp. LZ117. The results of this study will benefit further exploration of the strain LZ117 and related species for their applications in bioproduction. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|