Theoretical Investigation on the Conservation Principles of an Extended Davey–Stewartson System with Riesz Space Fractional Derivatives of Different Orders

Autor: Carlos Alberto Molina-Holguín, Ernesto Urenda-Cázares, Jorge E. Macías-Díaz, Armando Gallegos
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Fractal and Fractional, Vol 8, Iss 4, p 206 (2024)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract8040206
Popis: In this article, a generalized form of the Davey–Stewartson system, consisting of three nonlinear coupled partial differential equations, will be studied. The system considers the presence of fractional spatial partial derivatives of the Riesz type, and extensions of the classical mass, energy, and momentum operators will be proposed in the fractional-case scenario. In this work, we will prove rigorously that these functionals are conserved throughout time using some functional properties of the Riesz fractional operators. This study is intended to serve as a stepping stone for further exploration of the generalized Davey–Stewartson system and its wide-ranging applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje