Autor: |
Viswanath Padmanabhan Ramesh, Yasaman Sargolzaeiaval, Taylor Neumann, Veena Misra, Daryoosh Vashaee, Michael D. Dickey, Mehmet C. Ozturk |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
npj Flexible Electronics, Vol 5, Iss 1, Pp 1-12 (2021) |
Druh dokumentu: |
article |
ISSN: |
2397-4621 |
DOI: |
10.1038/s41528-021-00101-3 |
Popis: |
Abstract Harvesting body heat using thermoelectricity provides a promising path to realizing self-powered, wearable electronics that can achieve continuous, long-term, uninterrupted health monitoring. This paper reports a flexible thermoelectric generator (TEG) that provides efficient conversion of body heat to electrical energy. The device relies on a low thermal conductivity aerogel–silicone composite that secures and thermally isolates the individual semiconductor elements that are connected in series using stretchable eutectic gallium-indium (EGaIn) liquid metal interconnects. The composite consists of aerogel particulates mixed into polydimethylsiloxane (PDMS) providing as much as 50% reduction in the thermal conductivity of the silicone elastomer. Worn on the wrist, the flexible TEGs present output power density figures approaching 35 μWcm −2 at an air velocity of 1.2 ms −1, equivalent to walking speed. The results suggest that these flexible TEGs can serve as the main energy source for low-power wearable electronics. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|