New Investigation for the Liu-Story Scaled Conjugate Gradient Method for Nonlinear Optimization

Autor: Eman T. Hamed, Rana Z. Al-Kawaz, Abbas Y. Al-Bayati
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Mathematics, Vol 2020 (2020)
Druh dokumentu: article
ISSN: 2314-4629
2314-4785
DOI: 10.1155/2020/3615208
Popis: This article considers modified formulas for the standard conjugate gradient (CG) technique that is planned by Li and Fukushima. A new scalar parameter θkNew for this CG technique of unconstrained optimization is planned. The descent condition and global convergent property are established below using strong Wolfe conditions. Our numerical experiments show that the new proposed algorithms are more stable and economic as compared to some well-known standard CG methods.
Databáze: Directory of Open Access Journals