Self-powered portable melt electrospinning for in situ wound dressing

Autor: Ying-Tao Zhao, Jun Zhang, Yuan Gao, Xiao-Fei Liu, Jiang-Jun Liu, Xiao-Xiong Wang, Hong-Fei Xiang, Yun-Ze Long
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Nanobiotechnology, Vol 18, Iss 1, Pp 1-10 (2020)
Druh dokumentu: article
ISSN: 1477-3155
DOI: 10.1186/s12951-020-00671-w
Popis: Abstract Background Electrospun (e-spun) nanofibers for wound dressing have attracted wide attention due to its large specific surface area, large porosity and breathability. Compared with solution electrospinning (e-spinning), melt e-spinning is more bio-friendly without toxic solvent participation, which provides the possibility of in situ e-spinning on wounds directly. However, previously reported melt e-spinning devices were usually bulky and cumbersome due to their necessary heating unit, and different components were separated to avoid electrostatic interference. Results In this article, we report on a self-powered hand-held melt e-spinning gun which can work without any external power supply (outdoors). The problem of electrostatic interference for this integrated device was solved by using a special high heat transfer insulation unit. The apparatus is easy and safe to operate by a single hand due to its small volume (24 × 6 × 13 cm3) and light weight (about 450 g). Some biodegradable polymers, for example, polycaprolactone (PCL) fibers were successful e-spun onto wounds directly by using this dressing gun. Conclusions PCL fibrous membrane has good biocompatibility and can be in situ electrospun to wound surface as a wound dressing by the portable melt e-spinning gun. Besides wound dressing, this hand-held melt e-spinning gun may be used in 3D printing and experimental teaching demonstration aids.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje