High‐Frequency Ground Motions of Earthquakes Correlate With Fault Network Complexity

Autor: Avigyan Chatterjee, Daniel T. Trugman, Greg Hirth, Jaeseok Lee, Victor C. Tsai
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Geophysical Research Letters, Vol 51, Iss 12, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 1944-8007
0094-8276
DOI: 10.1029/2024GL109418
Popis: Abstract Understanding the generation of damaging, high‐frequency ground motions during earthquakes is essential both for fundamental science and for effective hazard preparation. Various theories exist regarding the origin of high‐frequency ground motions, including the standard paradigm linked to slip heterogeneity on the rupture plane, and alternative perspectives associated with fault complexity. To assess these competing hypotheses, we measure ground motion amplitudes in different frequency bands for 3 ≤ M ≤ 5.8 earthquakes in Southern California and compare them to empirical ground motion models. We utilize a Bayesian inference technique called the Integrated Nested Laplace Approximation (INLA) to identify earthquake source regions that produce higher or lower ground motions than expected. Our analysis reveals a strong correlation between fault complexity measurements and the high‐frequency ground motion event terms identified by INLA. These findings suggest that earthquakes on complex faults (or fault networks) lead to stronger‐than‐expected ground motions at high frequencies.
Databáze: Directory of Open Access Journals