Autor: |
Davood Ahmadian, Omid Farkhondeh Rouz |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-33 (2020) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-020-02452-3 |
Popis: |
Abstract In this paper, we investigate the exponential mean-square stability for both the solution of n-dimensional stochastic delay integro-differential equations (SDIDEs) with Poisson jump, as well for the split-step θ-Milstein (SSTM) scheme implemented of the proposed model. First, by virtue of Lyapunov function and continuous semi-martingale convergence theorem, we prove that the considered model has the property of exponential mean-square stability. Moreover, it is shown that the SSTM scheme can inherit the exponential mean-square stability by using the delayed difference inequality established in the paper. Eventually, three numerical examples are provided to show the effectiveness of the theoretical results. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|