Refined quadratic estimations of Shafer’s inequality

Autor: Yusuke Nishizawa
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-11 (2017)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1312-4
Popis: Abstract We establish an inequality by quadratic estimations; the double inequality π 2 x 4 + ( π 2 − 4 ) 2 + ( 2 π x ) 2 < arctan x < π 2 x 4 + 32 + ( 2 π x ) 2 $$ \frac{\pi^{2} x}{4 +\sqrt{(\pi^{2} -4)^{2} + (2\pi x)^{2}}} < \arctan{x} < \frac{\pi^{2} x}{4 +\sqrt{32+ (2\pi x)^{2}}} $$ holds for x > 0 $x>0$ , where the constants ( π 2 − 4 ) 2 $(\pi^{2} -4)^{2}$ and 32 are the best possible.
Databáze: Directory of Open Access Journals