Geometrical Aspects in the Analysis of Microcanonical Phase-Transitions

Autor: Ghofrane Bel-Hadj-Aissa, Matteo Gori, Vittorio Penna, Giulio Pettini, Roberto Franzosi
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Entropy, Vol 22, Iss 4, p 380 (2020)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e22040380
Popis: In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of ϕ 4 models with either nearest-neighbours and mean-field interactions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje