On skew cyclic codes over $ M_{2}(\mathbb{F}_{2}) $

Autor: Xuesong Si, Chuanze Niu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: AIMS Mathematics, Vol 8, Iss 10, Pp 24434-24445 (2023)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.20231246?viewType=HTML
Popis: The algebraic structure of skew cyclic codes over $ M_{2} $($ \mathbb{F}_2 $), using the $ \mathbb{F}_4 $-cyclic algebra, is studied in this work. We determine that a skew cyclic code with a polynomial of minimum degree $ d(x) $ is a free code generated by $ d(x) $. According to our findings, skew cyclic codes of odd and even lengths are cyclic and $ 2 $-quasi-cyclic over $ M_{2}(\mathbb{F}_{2}) $, respectively. We provide the self-dual skew condition of Hermitian dual codes of skew cyclic codes. The generator polynomials of Euclidean dual codes are obtained. Furthermore, a spanning set of a double skew cyclic code over $ M_{2}(\mathbb{F}_{2}) $ is considered in this paper.
Databáze: Directory of Open Access Journals